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Abstract. We introduce a model of three-species two-particle diffusion-limited reactions
A + B→ A or B, B+ C→ B or C, and C+ A → C or A, with three persistence parameters
(survival probabilities in reaction) of the hopping particle. We consider isotropic and anisotropic
diffusion (hopping with a drift) in one dimension. We find that the particle density decays as a
power law for certain choices of the persistence parameter values. In the anisotropic case, on
one symmetric line in the parameter space, the decay exponent ismonotonically varyingbetween
the values close to 1/3 and 1/2. On another, less symmetric line, the exponent is constant. For
most parameter values, the density does not follow a power law. We also calculated various
characteristic exponents for the distance of nearest particles and domain structure. Our results
support the recently proposed possibility that one-dimensional diffusion-limited reactions with
a drift do not fall within a limited number of distinct universality classes.

The kinetics of diffusion-limited reactions has been extensively studied, with recent emphasis
on fluctuations in low-dimensional systems [1–7]. In reactions with symmetric annihilation
or coagulation of species, including symmetric initial conditions, the density follows a
power lawC(t) ∼ t−α, with a non-trivial critical exponentα below the upper critical
dimensiondc; see [3, 5–9]. For instance, for single-species annihilation A+ A → 0 and
coagulation A+ A → A, the density decays asymptotically according to the power law
C(t) ∼ t−1/2 for d = 1 < dc = 2, and according to the mean-field power lawC(t) ∼ t−1

for d > dc, etc; see [10–19].
For two-species annihilation A+ B → 0 the density follows the power-law decay

C(t) ∼ t−d/4 for d < dc = 4 andC(t) ∼ t−1 (mean-field) ford > 4 [8, 20–24]. Recently,
it was found that in the two-species annihilation model with hard-core particle interactions
(same-species exclusion) ind = 1 the drift in particle hopping changes the critical exponent
α from 1/4 to 1/3 [25–27].

There are also several studies of multiparticle reactions such askA → 0 or A+B+C→
0 [28–35]. For instance, forkA → 0 the upper critical dimension isdc = 2/(k−1) [28, 30–
32]. For d > dc, the system follows the mean-field rate equation dC/dt ∼ −Ck and the
density decays asC(t) ∼ t−1/(k−1). For d < dc, the fluctuations are important, while
at dc, logarithmic corrections are generally expected in the mean-field power laws. The
general reaction A1 + A2 + · · · + Ak → 0 has also been studied by scaling arguments
[9, 22, 23].

Recently, a model was introduced for diffusion-limited reactions of two species of
particles, A+B→ A or B, with a drift in diffusion and with hard-core interactions between
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same-species particles. The decay exponent of the density was found to varycontinuously
as a function of the probability of which particle, the hopping one or the target, survives
in the reaction [36]. This study has suggested that diffusion-limited reactions with drift
(anisotropy) in the diffusion of particles do not fall within distinct universality classes in
d = 1.

In the present work, we extend this observation to a three-species hard-core two-particle
reaction model in one dimension. Our model has three adjustable parameters, the survival
probabilities, in the reaction, of the hopping particle. All our results were obtained by
extensive numerical Monte Carlo simulations utilizing concurrently a cluster of over 50
IBM RISC-6000 workstations at Clarkson University. In the rest of this work, we first
define the model generally, and then report numerical results for various parameter values.

Our model is an extension of the two-species model on the one-dimensional lattice.
Each lattice site can be occupied by a single particle (A or B or C), or be empty. Monte
Carlo simulations were performed for the cases of isotropic and maximally anisotropic
hopping. In the isotropic case, a randomly-selected particle attempts to hop to the left
or right nearest-neighbour site with equal probabilities 1/2. In the general anisotropic case,
the particle attempts to hop to the right with probability(1 + a)/2 or to the left with
probability (1−a)/2. In this work we took the maximal biasa = 1, i.e. the chosen particle
only attempts to hop to the right.

If the target site is empty then the hopping attempt succeeds and the chosen particle is
moved one lattice spacing. If the target site is occupied by a particle of the same species as
the chosen particle then the hopping attempt fails; this rule models the hard-core interaction
between same-species particles. If the target site is occupied by a particle of a different
species then the hopping is accompanied by reaction defined by the following probabilistic
rules (shown here for hopping to the right):

AB →
{

0A Probp

0B Prob 1− p and BA→
{

0B Probp

0A Prob 1− p (1)

BC→
{

0B Probq

0C Prob 1− q and CB→
{

0C Probq

0B Prob 1− q (2)

CA→
{

0C Probr

0A Prob 1− r and AC→
{

0A Probr

0C Prob 1− r (3)

where 06 p, q, r 6 1. The probabilitiesp, q, andr represent the persistence (probability
of survival) of the hopping particle. Thus the reactions involved are A+ B → A or B,
B+ C→ B or C, and C+ A → C or A.

In the Monte Carlo simulations, we used lattices of 105 sites with periodic boundary
conditions. One Monte Carlo time step corresponded, statistically, to the number of hopping
attempts equal to the number of remaining particles, so that, on average, each particle’s
hopping attempt rate (per unit time) was 1. Initial densities were 90% of the full occupancy,
with randomly distributed equal densities of the three species. Data were collected for up
to 105 Monte Carlo time steps and averaged over at least 100 runs for each choice of the
persistence parameter values.

Let us point out that if the initial density of the C particles, for instance, is zero, then our
model becomes two species, identical to that studied in [36]. In this two-species (A and B)
case, the initial symmetry A↔ B, assuming equal densities, is maintained dynamically for
all values ofp. Indeed, the number of A· · ·B configurations (here· · · represent empty
or no sites) which lead to a reaction when A ‘catches up’ with B (we consider the fully
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anisotropic hopping case here [36]) is equal, on the one-dimensional lattice, to the number
of B · · ·A configurations: they simply alternate.

In the new, three-species model, the symmetries are less robust. Indeed, starting from
a symmetric initial distribution, the system can evolve dynamically into a state which is
not symmetric with respect to the three species involved. In this regard, our results shed
an interesting light on the nature of the non-universal-exponent behaviour. Similar to the
two-species case, we find non-universal exponents only when all the following conditions
are satisfied, and presumably it is the interplay of all three of them that leads to non-
universality: the hopping must be anisotropic, the same-species interaction must be hard
core, and thefull symmetrymust be maintained. Thus, we find non-universal exponents
only on the symmetric linep = q = r in the parameter space. On some other lines, we
find constant-exponent (universal) behaviour, while in most of the parameter space, lack
of symmetry results in a non-power-law density variation (so that critical exponents are
not defined). We note, however, that for a certain three-species system in two dimensions,
with three-particle reactions, continuous exponents were found [37] for a specific line in
the parameter space, without introduction of spatial anisotropy in the dynamics.

In figure 1, we plot the density as a function of time for varying persistence parameter
values, for the fully symmetric casep = q = r and anisotropic hopping. The log–log
plot clearly shows the asymptotic power-law (straight-line) behaviour. However, the slope
depends on the persistence parameter. The decay exponents were estimated by extrapolation
of the local slopes, similar to [36]. In table 1, we list the exponents for various values of the
persistence parameter. We actually calculated several physical quantities which characterize
fluctuations in the system, similar to [36]. These include the densityC(t) ∼ t−α, the
average distance between nearest particles of the same species〈lAA (t)〉 ∼ tβ , the average
distance between nearest particles of different species〈lAB(t)〉 ∼ tγ , the average domain
size of same-species particles〈LA(t)〉 ∼ t δ, the average number of particles per such domain
〈NA(t)〉 ∼ tη, the average number of pairs of same-species particles〈NAA (t)〉 ∼ t−µ, and
the average number of pairs of different-species particles〈NAB(t)〉 ∼ t−ν . In the latter two
quantities the pairs need not be nearest neighbour, they can be separated by empty lattice
sites. All these exponents vary non-universally along the linep = q = r; their values will
be further discussed in the following paragraphs.

Table 1. Exponent estimates for several values of the persistence parameters, withp = q = r.
The exponents are defined according toC ∼ t−α , 〈lAA 〉 ∼ tβ , 〈lAB〉 ∼ tγ , 〈LA〉 ∼ tδ , 〈NA〉 ∼ tη,
〈NAA 〉 ∼ t−µ, 〈NAB〉 ∼ t−ν ; see text for further details.

p α β γ δ η µ ν

1 0.499(2) 0.49(1) 0.50(1) 0.503(6) 0.005(4) 0.497(4) 0.499(5)
0.75 0.456(3) 0.46(1) 0.47(1) 0.51(1) 0.064(3) 0.440(8) 0.525(5)
0.5 0.402(3) 0.42(1) 0.44(1) 0.54(1) 0.16(1) 0.381(7) 0.558(5)
0.25 0.360(4) 0.387(3) 0.42(1) 0.56(1) 0.23(1) 0.341(2) 0.578(4)
0 0.340(4) 0.360(2) 0.405(6) 0.57(1) 0.26(1) 0.316(4) 0.60(3)

The isotropic-hopping case was studied numerically only forp = q = r in this work.
We found that the exponents do not depend on the persistence parameter. The characteristic
exponents for the isotropic hopping were estimated asα = 0.350(5), β = 0.366(5),
γ = 0.438(8), δ = 0.496(4), η = 0.164(8), µ = 0.328(3), andν = 0.512(6), where the
uncertainties always refer to the last digit. The density-decay exponent,α, value is somewhat
larger than 1/3. Furthermore, it is somewhat smaller than the predictionα = 3/8 = 0.375
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Figure 1. Log–log plot of the decay of the A-particle density against time, forp = q = r =
1 (bottom curve), 0.75, 0.5, 0.25, 0 (topmost curve).

for three-species two-particle annihilation Ai+Aj → 0 (i 6= j) [32]. As already mentioned,
exponent values exactly (or very close to) 1/3 appear in the fully anisotropic A+ B→ 0
reaction. The valueα near 1/3 was also found for the two-species variant of our model with
anisotropy and withp = 1/2, and in the anisotropic three-species case withp = q = r = 0
(see table 1).

Thus, if seems likely that both the isotropic-hopping results and the anisotropic results,
with the latter limited to certain special points in the parameter space, will be eventually
identified within some established universality classes of various diffusion-limited reactions.

However, for anisotropic hopping, the exponents are non-universal when the persistence
parameter values are varied in the full range from 0 to 1, both in the symmetric three-
species case and in the two-species case (where the symmetry is built-in). Of course,
there is always the danger that the observed behaviour, interpreted as non-universality, is
actually a slow crossover phenomenon. However, we note that our simulation is sufficiently
‘large scale’ as compared to other simulations (including our own in this work) which have
found both universal and non-universal behaviour. So, we feel confident that the observed
non-universality is well established within the limits of modern computational capabilities.

Some general exponent properties can still be discussed even if the universality class
association is ambiguous. Owing to the effective repulsion, one expects that〈lAA (t)〉 6
〈lAB(t)〉, i.e.β 6 γ . This inequality is always satisfied by our results (including the case of
less symmetry discussed later). There is another inequality,β > α, which holds because the
average interparticle distance is related to the (fluctuating) particle densitycA(t) according
to 〈lAA 〉 = 〈1/cA(t)〉 > 1/〈cA(t)〉 [38, 39]. Our simulation results also satisfy this relation
within error bars.

Since the density is approximately equal to the number of particles per domain divided
by the average domain size, i.e.CA ∼ 〈NA〉/〈LA〉 [36, 39], the exponentsδ andη should
satisfy the relationα = δ−η. Our data are consistent with this relation. The rate of change
of the A-particle density is proportional to the number of the pairs A· · ·B, 〈NAB〉, divided
by the diffusion time which is of order〈lAB〉2/D, whereD is the diffusion constant. This
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Figure 2. Log–log plot of the decay of the A-particle density against time, forp = q = 1 and
r = 1 (bottom curve), 0.75, 0.5, 0.25, 0 (topmost curve).

yields the exponent relationα = 2γ + ν − 1 [39]. Another exponent relation follows by
observing that the same rate can be estimated as the inverse of〈LA〉〈lAB〉2/D, which yields
α = 2γ + δ − 1 [26]. Combining the above relations, we getν = δ and 2γ + η = 1.
The latter equalities are satisfied by our results to within 10%. Note that these exponent
relations are based on a combination of mean-field and diffusive arguments and they are
therefore phenomenological.

For the symmetric dynamics withp = q = r = 0 and anisotropic hopping, the exponents
are equal to those for the isotropic hopping case within error bars. The estimated exponent
of the density is close toα = 1/3. When values of the persistence parameters increase along
the diagonal (symmetric) line in the parameter space the exponent of the densityα increases
continuously in the anisotropic case. Atp = q = r = 1 the density exponent estimate is
close toα = 1/2 (the latter value is likely exact). The decay of the density∼ t−1/2 is
then similar to that of the single-species coalescence or annihilation, A+ A → A or 0,
and the two-species annihilation version of our model [36], discussed earlier, atp = 1.
In this case no large domains of the same species of particle are formed. Indeed, the
exponentη estimates are close to zero. Even in this well mixed situation, non-mean-field
fluctuations can arise in the form of non-mean-field interparticle distribution [12, 34]. For
p = q = r = 1, the ‘catching up’ argument for the impossibility of large same-species
domains applies, similarly to the two-species case. This argument is not reviewed here; see
[36].

For anisotropic hopping, we explored points in the parameter space ofp, q, and r
outside the symmetric linep = q = r. The only other regions in the parameter space where
power-law behaviour is found are the linep = q = 1, r-varying, and two lines obtained
by relabelling. In figure 2, we plot the density against time forp = q = 1 and several
r values. For large time, a power-law behaviour is obtained with the same exponents for
r < 1 as in the casep = q = r = 1, within error limits. It is important to recall that for
p = q = r = 1 the system is fully mixed: there are no large same-species domains formed.
For r < 1, the B species is no longer symmetric (while the A↔ C symmetry is still
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Figure 3. Log–log plot of the decay of the A (upper curve) and B (lower curve) particle densities
for p = q = 1, r = 0.

Figure 4. Log–log plot of the variation of the C-particle density (upper curve) and A (and B)
density (lower curve) against time, forp = 1, q = r = 0.

preserved). Numerical indications are that the density of B still follows approximately the
same power law as A and C, see figure 3 for the caser = 0, but with a smaller amplitude.
The well mixed state seems to persist forr < 1.

As already mentioned, probes at several otherp, q, andr values with varying degrees
of symmetry (though we did not do a ‘dense’ scan of the full cube 06 p, q, r 6 1) seem
to suggest that outside the linesp = q = r, p = q = 1 (and alsop = r = 1 andq = r = 1
by symmetric relabelling), the behaviour of the density is no longer power law. Let us
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consider, for illustration, the pointp = 1, q = r = 0. The symmetry here seems not lower
than, for instance, the lineq = r = 1. In both cases, C is special while A and B remain
symmetric. However, forp = 1, q = r = 0, our numerical data suggest that C particles
survive with non-zero final density, see figure 4, while A and B are eliminated faster than a
power law for large times, as shown in figure 4. Attempts to fit the A density to a stretched
exponential were inconclusive (the fitted exponent of the stretched-exponential power was
very small). Generally, forp, q, and r values which are not symmetrically positioned in
the parameter space there is no reason to expect equal large-time densities of the species
even for equal-density initial conditions.

Finally, let us list some preliminary findings [40] which hopefully illuminate the
robustness of the results of this work to changes in the reaction rules. Numerical
Monte Carlo simulations [40] suggest that the following symmetric three-species reaction,
A + B → C, B+ C → A, C + A → B, has the critical exponentα = 1

2 regardless of
the drift. However, for the three-species two-particle annihilation reaction, A+ B → 0,
B+ C→ 0, C+ A → 0, the exponents seems to depend on the drift [40].

In summary, we studied three-species diffusion-limited reactions with emphasis on the
effects of hopping anisotropy and variation of the survival probabilities of the hopping
particles. The ‘critical’ power-law behaviour was observed only along special, symmetric
lines in the parameter space. In the full three-species symmetry case the critical exponents
vary continuously, with that for the particle density increasing from about 1/3 to 1/2 when
p = q = r increase from zero to one. On the less symmetric linep = q = 1, the exponents
for varying r < 1 are the same as forp = q = r = 1.

This work was supported in part by Inha University. Their financial assistance is gratefully
acknowledged.
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